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Adaptive wall functions for the v2- f turbulence model
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SUMMARY

Adaptive wall functions for the v2- f turbulence model have been derived for the flow over a flat plate
at zero pressure gradient. These wall functions were implemented via tables for the turbulence quantities
and the friction velocity u�. A special treatment for the � and f boundary conditions is proposed. On fine
grids (y+<1) this approach yields results consistent with the wall integration solution. Detailed numerical
results are presented for a zero pressure gradient boundary layer and separated flow over a ramp. Copyright
q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Wall functions for RANS were first developed using the universal character of the logarithmic
layer for the design of off-wall boundary conditions [1]. These boundary conditions require the
first cell centre to lie in the logarithmic layer and their application to the intermediate (buffer)
layer or viscous sub-layer is usually inaccurate. Adaptive wall function formulations that do not
restrict the location of the first grid point between wall and logarithmic layer have become the
focus of considerable amount of research and are widely used in computational codes.

In Reference [2], we have proposed an efficient, accurate and robust approach for adaptive
wall functions that is applicable to different RANS turbulence models. The proposed wall func-
tions are formulated for zero pressure gradient flows. They are based on look-up tables for the
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652 G. KALITZIN AND G. MEDIC

turbulence quantities and the friction velocity u� = √
� du/dy|w. These tables are built upon well-

resolved, grid-converged numerical solutions obtained with the particular turbulence model. The
boundary conditions derived from these tables are valid for the viscous, logarithmic as well as
the intermediate region. The friction velocity u� is computed explicitly avoiding a costly iterative
method.

The adaptive wall functions were validated for the flow over a flat plate. Detailed analysis
of the discrepancy between the coarse grid wall function solutions and the corresponding wall
integration was performed. A method that allows the isolation of the errors resulting from the
modelling of the physics was proposed. It is based on a computational grid that is identical
to the wall integration grid but shifted by a distance � from the wall. This practically elimi-
nates the numerical errors caused by the coarseness of the wall functions grid in the near-wall
region. Indeed, this method confirms the validity of the proposed boundary conditions based
on look-up tables; i.e. the discrepancies on the coarse grid are a consequence of numerical
errors.

The adaptive wall functions have also been applied to recirculating flow. It has been observed
that for the v2- f model [3] the scaling used to build the look-up tables breaks down at separation
and reattachment points where u� → 0. In the present paper, we investigate that problem in detail
and propose a new formulation for wall functions which on fine grids (y+<1) yields results
consistent with the wall integration solution. These new wall functions are applied to flow over a
ramp that includes a recirculation region.

2. ADAPTIVE WALL FUNCTIONS

In the case of turbulent flow of incompressible fluid with constant molecular viscosity, the bound-
ary layer can be split in three distinct regions: the viscous sublayer, the logarithmic layer and the
defect layer. The location of the outer edge of the logarithmic layer depends on the Reynolds
number, i.e. the extent of the logarithmic layer grows with increasing Reynolds number. In
a quasi-equilibrium boundary layer (e.g. flow over a flat plate at zero pressure gradient), the
region between the wall and the outer edge of the logarithmic layer is universal; i.e. the ve-
locity profiles collapse when scaled with the friction velocity u� and molecular viscosity �.
The equations are recast in non-dimensional form; the velocity and turbulence variables in plus
units are:

U+ = U

u�
, y+ = yu�

�
, �+

t = �t
�

, k+ = k

u2�
, �+ = ��

u4�
, v2

+ = v2

u2�
, f + = f �

u2�
(1)

The universal function U+(y+) is obtained for each model by solving the wall layer equations
numerically. Note that U represents the wall-tangential velocity component. Now, knowing the
universal function, the friction velocity can be solved from the computed velocity at the first grid
point. The velocity profile, U+(y+), is transformed to U+(y+ ·U+) =U+(Re), where Re= yU/�.
This transformation can be done once and for all, and the function stored in a table. Using y1
and U1, where index 1 denotes the wall adjacent cell centre, this look-up table provides U+

1 . The
friction velocity follows as u� =U1/U

+
1 . This eliminates the need for costly iterative computation

of u�.
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Figure 1. Numerical solution for v2- f model at different Re�: k+ and v2
+
.

The eddy-viscosity is explicitly related to the velocity profile, i.e. in the entire region between
the wall and the outer edge of the logarithmic boundary layer the equation (1+ �+

t )dU+/dy+ = 1
holds. In some wall function formulations the velocity profile and eddy-viscosity do not obey this
relation. The result is grid dependence.

In the present paper, this is addressed by generating a look-up table for each non-dimensionalized
turbulence variable from a well-resolved numerical solution for the v2- f model. Each turbulence
variable is tabulated against y+ and the table takes the form of spline coefficients (see Appendix B).
It is possible to create such tables for the v2- f model because the numerical solution shows universal

character. This is shown for the turbulent kinetic energy k+ and the scalar v2
+

in Figure 1 for
different Re�.

2.1. Numerical implementation

The adaptive wall functions have been implemented in two three-dimensional, cell centred RANS
flow solvers: a single-block, Cartesian, incompressible solver IBRANS [4] and a multi-block,
body-fitted, compressible solver SUmb [5].

In the Cartesian flow solver, the x-velocity component, U , is tangential to the wall and the wall
function tables (see Appendix B) are used in the following way. First, the velocity U1 and wall
distance y1 for wall adjacent cell centre are used to compute a corresponding Reynolds number
Re1 = y+

1 U
+
1 = y1U1/�. The non-dimensional velocity is obtained from the table: U+

1 =U+(Re1)
and the friction velocity follows to: u� =U1/U

+
1 . The viscous flux at the wall, � dU/dy, is sub-

stituted with u2� when solving the momentum equation. The turbulence variables are enforced in
the cell centre of the wall adjacent cells. First the non-dimensional wall distance y+

1 = y1u�/�
is computed. The tables provide the turbulence variable, say k1 = k+

1 u
2
� . This value is used as

a boundary condition, i.e. the turbulence field equations are not solved in the wall adjacent
cells. IBRANS solves the mean flow and turbulence equation implicitly. Wall function com-
putations require an appropriate modification of the implicit matrices. When solving the mean
flow equation, the implicit matrix for the U -momentum equation is discretized in the same
way as when using no slip boundary conditions. The wall function flux is incorporated into
the right hand side (RHS) as a correction. When solving the turbulence equation, the diagonal and

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:651–667
DOI: 10.1002/fld



654 G. KALITZIN AND G. MEDIC

off-diagonal elements for the wall adjacent cells in the implicit matrix are set to one and zero,
respectively.

SUmb has been recently developed at Stanford under the Department of Energy’s (DoE)
Advanced Simulation and Computing (ASC) program. It is a state-of-the-art multiblock flow
solver, based on a finite-volume formulation, a modified Runge–Kutta time integration scheme, a
Roe upwind spatial discretization and a multigrid solution procedure to accelerate convergence to
a steady state. The wall function implementation has been adjusted for SUmb which is an explicit
and curvilinear code. To account for the latter, the stress tensor and velocity vector in the wall
adjacent cells is computed and then rotated to a local wall aligned coordinate system. The shear
stress is then substituted with the square of the friction velocity that is obtained from the look-up
table using the tangential velocity component, as discussed before. Finally, the modified stress
tensor is rotated back to the global coordinate system.

The results for the flat plate and the recirculating flow via suction and blowing are computed
with the IBRANS solver. SUmb has been used for the flow over a ramp. If not specified otherwise,
the v2- f model with N = 6 has been used in the computations (for more details on the v2- f model
see Appendix A).

3. FLOW OVER A FLAT PLATE

Wall functions are designed to be used with coarse near-wall grids. The solution of the dis-
crete RANS equations is associated with a numerical error that increases with decreasing grid
resolution. The difficulty in testing wall function implementations is to distinguish between this
numerical error and inaccuracies that may result from the physical model (boundary condition). The
�-grid method eliminates the numerical error and provides a test for the correctness of the applied
boundary condition. In the �-grid, a wall integration grid is shifted by a distance � into the flow to
provide the desired y+ location of the first cell. The wall functions provide the desired boundary
conditions. At the same time, the grid resolution and the associated numerical error is of the same
order as for the wall integration.

In Figures 2 and 3, flow over a flat plate is solved up to the location defined by momen-
tum thickness based Reynolds number of Re� = 7700. The first cell centre at the inflow is at
y+
1 = 0.11, 1.1, 2.5, 5, 11, 25, 111. When �-grids are used with the correct boundary conditions,

the computations collapse onto the wall integration profile; the results for the velocity U+, eddy-
viscosity �+

t and the turbulence variables k+, v2
+
, �+ and f + are presented in Figure 2. Since the

results for all the grids are practically coinciding, the colors of the curves are chosen to alternate
between grey and black to visualize the first grid point for each grid. The results obtained on
“classic” coarse grids with the same y+

1 values are presented in Figure 3. The spread in the results
is the consequence of numerical errors. This is inferred from the fact that solutions on the �-grids
collapse on the wall integration result.

The spread of theU+ profiles in the defect region is a result of different predictions for u� which,
in turn, affects the skin friction prediction. The computation with the first cell centre at y+ = 5
or y+ = 11 under-predicts and the computation with y+ = 111 over-predicts the non-dimensional
velocity profile when compared with the wall integration solution. The deviation of the eddy-
viscosity �+

t for grids with the first cell centre at y+ = 25 or y+ = 111 can be explained by the
relative coarseness of those grids throughout the boundary layer.
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Figure 2. Application of adaptive wall functions using �-grids.

4. BOUNDARY CONDITIONS FOR � AND f

4.1. Boundary condition for �

The ability of these wall functions to capture pressure gradient driven separation and reattachment
has been studied in Reference [2] by considering a simple test problem: the boundary layer over a
flat plate with an imposed streamwise pressure gradient. The pressure gradient was modulated by
suction and blowing along the upper boundary of the computational domain. Contours of turbulent
kinetic energy k and streamlines computed using wall integration are shown in Figure 4.

As pointed out in Reference [2], the scaling used to build the look-up table wall functions for
the v2- f model breaks down when separation is present. On the fine grid (y+

1 = 1 at inlet) the
skin friction computed with wall functions that use � from the look-up table differs from the wall
integration solution as shown in Figure 5.

This is related to the non-zero, finite boundary condition for � and its scaling with u�. In the
wall function approach based on look-up tables, �1 in the first cell centre is computed from �+table
which is approximately 0.26. However, when wall integration is used, �+ becomes singular near
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Figure 3. Application of adaptive wall functions using coarse grids.

x/L = 0.45

Figure 4. k contours computed using v2- f model, wall integration.

the separation and reattachment points where u� approaches zero; � in the wall integration approach
has a finite value at those points as shown in Figure 6.

This problem can be solved by avoiding the use of a table for �+. In analogy to the derivation
of the wall integration boundary condition for �w in Reference [3], an equation for � in the
first cell centre above the wall can be derived for coarse grids. Using the usual boundary layer
assumption that the turbulence quantities depend only on the distance to the wall and neglecting
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the convection terms, the k-equation can be simplified for the region between wall and outer edge
of the logarithmic layer as

� = Pk + d

dy

(
(� + �t )

dk

dy

)
(2)

In discrete form (for notation see Figure 7), using a finite difference method, Equation (2) can
be written as (with dk/dy = 0 at the wall):

�1 = Pk1 + 1

y12

(
(� + �t )12

(k2 − k1)

y2 − y1

)
(3)

where Pk1 = �t1(dU/dy)21. The look-up table is used to compute (dU/dy)1 and k1.
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The effect of using this boundary condition for � can be seen in Figure 6. When Equation (3)
is used, � approaches the wall integration solution. On the other hand, when the look-up table is
used for �+, � is proportional to u�. This affects the skin friction as shown in Figure 5. The wall
integration solution and the wall function solution using Equation (3) practically coincide.

A closer look at the turbulent kinetic energy reveals a similar problem: k computed using wall
integration does not scale with u� as shown in Figure 8. Obviously, the modification for � proposed
above does not eliminate this problem. However, the error for k in the first cell above the wall is
less significant. It impacts the diffusion term in the adjacent cell which on a uniform grid has the
form: �(2k2 − k1 − k3)/�y2. The value of k in the first cell is very small and it grows rapidly with
increasing distance from the wall; an error in k1 has a small impact on the diffusion term in the
second cell above the wall as the difference between k2 and k3 dominates this term. In contrast,
� is large at the wall and decreases with wall distance increasing the impact of the error in �1 on
the diffusion term in the � equation.

An accurate value of �1 is important, as shown in Figure 9. Although k1 from the look-up table
differs from the wall integration value, k approaches the wall integration solution away from the
wall faster when Equation (3) is used for �.

4.2. Boundary condition for f

In the original v2- f model (the model version with N = 1, see Appendix A) the non-dimensional
variable f + has also a finite, non-zero value at the wall. Similarly to the proposed wall function
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for � described above, a look-up table for f in the first cell centre can be avoided by using the v2

equation:

k f = v2

k
� − d

dy

(
(� + �t )

dv2

dy

)
(4)

or in a discrete form using a finite difference method (with dv2/dy = 0 at the wall):

f1 = v21

k21
�1 − 1

k1

1

y12

(
(� + �t )12

v22 − v21

y2 − y1

)
(5)

where v21 and k1 are obtained as before from the look-up table, Pk1 is computed using (dU/dy)1
from the table and �1 from Equation (3). Note that close to the wall y12 and k1 are small and
the factor in front of the bracket in Equation (5) becomes large amplifying the errors in the flux
computation. In the viscous sublayer v2 increases with y4 which may require a more accurate
gradient approximation than the one used in Equation (5).

Coarse grid results for the flat plate computed using Equations (3) and (5) for �1 and f1,
respectively, are shown in Figure 10. The coarse grid results compare well with the results computed
on a fine grid. In contrast to Figure 3, f tends here to a non-zero value at the wall.

There is an interesting side effect of using wall functions with the v2- f model. It is well known
that for N = 1 a coupled solver is needed due to strong coupling of the v2 and f equations at
the wall. The application of the proposed wall functions effectively decouples the variables and
allows the use of a segregated solver.

5. FLOW OVER A RAMP

Incompressible flow over a two-dimensional ramp was studied experimentally in Reference [6],
where a detailed experimental database was assembled for a range of Reynolds numbers (the intent
was to study the effect of Reynolds number on the recirculation). The ramp is a circular arc with
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Figure 10. Application of adaptive wall functions using coarse grids for the original v2- f model, N = 1.

the radius R = 1.814L , where L is the length of the ramp. The height of the ramp is h = 0.3L
and the height of the channel upstream of the ramp is H = 1.871L (see Figure 11). The Reynolds
number is ReL =U∞L/� = 7 · 105 and the momentum thickness based Reynolds number for the
velocity profile at x/L = −0.2 is Re� = 20 100.

Grids with the first cell centre y+ of 1, 5, 17.5 and 30 in the channel upstream of the ramp were
used. The grid size varies from 160× 120 cells for the finest grid to 160× 80 for the coarsest grid.
Despite the constant size of the wall adjacent cells, the first cell centre y+ varies significantly in
the recirculation region, as shown in Figure 12. Convergence curves are shown in Figure 13. Note
that the convergence is improved as the grid is coarsened.

Skin friction coefficient distribution is shown in Figure 14. As already discussed in Reference [2],
even for recirculating flows the numerical solution in the near-wall region scales similarly to the
flow over a flat plate—that is the reason why wall functions function for these flows (pressure
gradient has a small effect). In addition, y+ depends on u� and therefore the actual y+ in the
recirculation is much smaller than y+ at the inflow on a given grid (e.g. it drops from 30 to 10). In
the recirculation region as well as in the recovery region, the results with the coarsest grid (y+ = 30)
start to deviate from the other grids. Similar behaviour was also observed in the recirculation flow

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:651–667
DOI: 10.1002/fld



ADAPTIVE WALL FUNCTIONS FOR v2- f MODEL 661

H

R

L

h

y

x

Figure 11. Ramp geometry.

x/L

y+

-2 -1 0          1           2           3          4
10-1

100

101

102

y+=1
y+=5
y+=17.5
y+=30

Figure 12. First cell centre y+ distribution.

test case discussed in Reference [2]. It was attributed to the fact that k in the recirculation region
starts to deviate from the universal solution at lower y+ values than the velocity. Curiously, the
recirculation length computed with the v2- f model on the wall integration grid is significantly
smaller than the experimental data, while the results on the coarser grids show a better agreement,
see Table I.

Profiles of the velocity, U , and turbulent shear stress, �xy = �t dU/dy, non-dimensionalized
using the velocity at the boundary layer edge U0, are shown in Figures 15 and 16 for selected
stations. The station x/L =−2.0 is located upstream of the ramp, x/L = 0.0 at the beginning of the
ramp, x/L = 1.37 at the measured reattachment point and x/L = 4.0 downstream of the ramp (see
Figure 14 for the location of measurement stations). At the first two stations the velocity and
turbulent shear stress are very similar for all computations, i.e. the boundary layer thickness is
well captured on all grids. However, all computations fail to predict the near-wall peak of the shear
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Table I. Separation length and reattachment location.

Separation Reattachment
Grid length (x/L) location (x/L)

y+ = 1 0.33 1.16
y+ = 5 0.36 1.16
y+ = 17.5 0.51 1.22
y+ = 30 0.69 1.32
Experiment 0.73 1.37
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stress. At the reattachment point, the prediction of the velocity and shear stress profiles become
grid dependent. At the furthest downstream location the results are again less grid dependent, as
the flow recovers to a standard zero pressure boundary layer.

To examine in more detail why the wall functions are not failing in the recirculation region,
the wall integration solution is compared to the universal solution for the flat plate. This is done
to assess the validity of the boundary condition provided by the look-up tables. The tangential
velocity profiles (in non-dimensional form) in the recirculation region at x/L = 1.0 (dot-dot-dashed
line) and downstream of the reattachment point at x/L = 1.2 (dashed line) computed on the wall
integration grid are presented on the left in Figure 17. The profiles are compared with the universal
solution (solid line). For x/L = 1.0 the universal solution has been plotted for reversed flow. The
symbols in the same figure represent the tangential velocity U+

1 and wall distance y+
1 at the cell

centre of the wall adjacent cell (diamonds for x/L = 1.0 and circles for x/L = 1.2) for the four
coarser grids used (the four grids have a y+ of 1, 5, 17.5 and 30 at the inlet of the domain).
The plot shows, that although the flow is reversed at x/L = 1.0, the velocity profile follows the
universal solution for small values of y+ and a boundary condition for the coarse grids derived
from the universal solution is a reasonable choice. At x/L = 1.2 (closer to the reattachment point)
the discrepancy is more significant.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:651–667
DOI: 10.1002/fld



664 G. KALITZIN AND G. MEDIC

y/
L

-0.003 -0.002 -0.001 0
0

0.2

0.4

0.6 y+ = 1
y+ = 5
y+ = 17.5
y+ = 30
Exp

x/L = -2.0

y/
L

-0.003 -0.002 -0.001 0
0

0.2

0.4

0.6
x/L = 0

-0.003 -0.002 -0.001 0
0

0.2

0.4

0.6

-0.015 -0.01 -0.005 0
0

0.2

0.4

0.6

τxy /U0
2

τxy /U0
2 τxy /U0

2

y/
L

-0.003 -0.002 -0.001 0
0

0.2

0.4

0.6
x/L = 4.0

Figure 16. Turbulent shear stress profiles.
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Figure 17. Profiles of tangential velocity U+
t and k+ in the recirculation region.

The profiles of turbulent kinetic energy, k+, differ more significantly from the look-up table. This
can be attributed to high levels of k generated in the separation region and convected downstream.
In Figure 18, the streamlines for the solution computed on the finest grid (y+ = 1) are overlayed
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x/L=1.0 x/L=1.2

Figure 18. Streamlines computed on the finest grid (y+ = 1) overlayed over the coarsest grid (y+ = 30).

over the coarsest grid (y+ = 30). The resolution is still sufficient for the recirculation region to be
captured accurately.

6. CONCLUSIONS

This paper presents adaptive wall functions for the v2- f model. The wall functions are based on
look-up tables created for the flow over a flat plate with zero pressure gradient. The inconsistency
observed in Reference [2] for the � wall function when used for recirculating flows has been further
investigated and a new boundary condition is proposed. A similar treatment for the variable f is
proposed for the v2- f model with N = 1.

The adaptive wall functions were applied to the flow over a ramp, where a recirculation region
is present. In contrast to earlier computations this case has an additional complexity of curved
solid walls. The results show that the wall functions allow accurate coarse grid computations with
the v2- f model. It has also been observed that turbulence quantities deviate more significantly
from the universal solution in the recirculation and recovery region.

APPENDIX A: v2- f TURBULENCE MODEL

There are two versions of the v2- f model that are commonly used. They can be distinguished by
the coefficient N which affects the balance of terms in the v2 and f equations. In the original
model [3], this coefficient is equal to 1 and in the modified version [7, 8] it is set to 6. Setting the
coefficient N to 6 leads to zero wall boundary conditions for f . This modification was introduced
to remove numerical difficulties that arise in the original model due to strong coupling of f and
v2 at the wall, see Equation (A8).

The v2- f model consists of three transport and one elliptic relaxation equations. The equation
for turbulent kinetic energy, k, is

�t (�k) + ∇ · (�Uk) = �Pk − �� + ∇ · ((� + �t )∇k) (A1)
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where

�Pk = R : ∇U = − 2
3�k(∇ ·U ) + 2�t |S|2 − 2

3�t (∇ ·U )2 (A2)

with Si j = 1
2 (� jUi + �iU j ) and �t being the eddy viscosity. The term R : ∇U is the inner product

defined as
∑

i j Ri j∇iU j .
The equation for the dissipation of turbulent kinetic energy, �, is

�t (��) +∇ · (�U�) = C�1�Pk − C�2��

T
+ ∇ ·

((
� + �t

	�

)
∇�

)
(A3)

The equations for k and � are supplemented with the equation for v2:

�t (�v2) + ∇ · (�Uv2) = �k f − �N
v2

k
� + ∇ · ((� + �t )∇v2) (A4)

with f representing the non-local effects

f − L2� f = (C f 1 − 1)
2/3 − v2/k

T
+ C f 2

Pk
k

+ (N − 1)
v2

kT
(A5)

where the turbulence length scale L is

L =CL max

[
min

[
k3/2

�
,

k3/2√
6 v2C�|S|

]
,C


�3/4

�1/4

]
(A6)

and the turbulence time scale T is

T = min

[
max

[
k

�
, 6

√
�

�

]
,

�k√
6 v2C�|S|

]
(A7)

with � = 0.6. The eddy viscosity is defined as �t =C��v2T .
For solid walls, when y → 0, this yields:

k(0) = 0, v2(0)= 0, � → 2�k

y2
, f → −4(6 − N )�2v2

�y4
(A8)

For the modified model (N = 6) the variable f is zero at the wall.
The coefficients for the original version (N = 1) are:

C� = 0.19; C�1 = 1.3 + 0.25/[1 + (0.5CLd/L)2]4; C�2 = 1.9

C f 1 = 1.4; C f 2 = 0.3; CL = 0.3; C
 = 70; 	� = 1.3
(A9)

and the coefficients for the modified version (N = 6) are:

C� = 0.22; C�1 = 1.4(1 + 0.050
√
k/v2); C�2 = 1.9

C f 1 = 1.4; C f 2 = 0.3; CL = 0.23; C
 = 70; 	� = 1.3
(A10)
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APPENDIX B: WALL FUNCTION TABLES

The wall function tables used in this paper were created for profiles of the non-dimensional velocity
and turbulence variables obtained from a computation of flow over a flat plate with zero pressure
gradient at a sufficiently large Reynolds number (Re�>5000) on a fine, wall-integration grid. The
tables consists of the coefficients for cubic splines which approximate the profiles dependent on
the non-dimensional wall distance y+ (note that the velocity profile is stored as a function of the
Reynolds number Re= y+U+; see Section 2).

Each spline extends from one cell centre to the adjacent cell centre of the fine grid. It has
the form: s(y+) = a0 + a1y+ + a2y+2 + a3y+3. The coefficients are determined by enforcing the
variable value and its gradient at the boundary points of each spline. The gradients are determined
numerically from the profiles with a second order difference formula. There is no spline between
the first and second data point since the first point is needed for the gradient computations. Viscous
sublayer approximations are used between the wall and the first spline (see Reference [2]).
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